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Introduction 

Animal biodiversity is currently under great threat partially because there are currently no 

global-scale datasets available to help inform policy decisions, especially in tropical forest 

regions (Dirzo et al 2014).  Satellite data has global coverage but such data has rarely been used 

to help preserve animal biodiversity.   Local-scale studies have shown a wealth of ways in which 

animals provide ecosystems services (e,g, carbon cycling –Figure 1).  However, there is 

currently no way to upscale how these services cascade through entire ecosystems, especially in 

data limited tropical forests. A macroscale mechanistic understanding of the roles animals play in 

tropical forests would be invaluable. 

Recently there has been an explosion of satellite derived data that can be used to address many of 

the world’s most pressing environmental problems.  We are now on the verge of global LiDAR 

coverage and a new spaceborne LiDAR will be installed on the International Space Station in 

Nov 2018—the Global Ecosystem Dynamics Investigation (GEDI) (Qi and  Dubayah 2016) (Co-

Investigator Goetz is the GEDI Deputy PI for Science, and co-Is  Jantz and Burns are members 

of the GEDI Science Team).  This will dramatically increase the geographic extent (51.5° S to 

51.5° N) over which habitat structure can be systematically measured. Here we propose to use 

this explosion of new satellite data and especially GEDI, to help explain the valuable roles 

animals play in forest ecosystems thus prioritizing biodiversity conservation in tropical forests, 

the most data limited region of the planet. 

We propose to combine this new global forest structure data with a General Ecosystem Model 

(GEM), the Madingley model (Harfoot et al 2014), which can address the link between animals 

and ecosystem processes on a global scale. Rather than modelling individual species, our model 

instead combines animals into cohorts based on their functional traits, including trophic level 

(herbivore, omnivore, and carnivores), reproductive strategy (semelparity vs. iteroparity), 

thermoregulatory mode (endothermy vs. ectothermy) and mobility. These traits are used to 

determine the nature and strength of interactions that modelled organisms engage in. Mass 

scaling relationships then determine how total biomass of plants, and animal mass in relation to 

optimal prey size determine the rates of ecosystem processes. The Madingley model has 

accurately predicted emergent ecological patterns such as individual growth patterns, community 

rates of biomass turnover, ecosystem trophic pyramids, and macroecological global patterns of 

trophic structure (Harfoot et al 2014 and Bartlett et al 2016).  



Canopy structure derived from LiDAR data can be used in conjunction with modern bio-logging 

devices (Wilmers, et al 2016), to assess the  landscape attributes that motivate the movement 

behavior and interactions with other species. Bio-logging involves the use of remote sensors that 

can continuously measure most aspects of an animal's state (e.g., location, behavior, caloric 

expenditure, interactions with other animals) and external environment (e.g., temperature, 

salinity, depth). Modern technology, such as accelerometers sampling at 16hz or faster, can be 

used to well determine the behavior of individual animals (Wilmers, et al 2016) and how that may 

vary as a function of lateral and vertical canopy structure.  

Figure 1 The many ways that animals can affect ecosystem carbon cycling. Animals 

can mediate uptake (black arrows) and release (red arrows) of CO2 thereby determining 

levels of net primary production (NPP) by influencing the amount of plant biomass 

present in an ecosystem through browsing and tree damage (elephants in foreground), 

and through grazing (herbivorous animals in left background).  Predators can influence 

herbivore impacts on NPP by reducing their spatial abundance via predation and by 

causing prey to forego foraging to evade predation (right foreground). Animals can 

further influence biophysical conditions such as temperature and soil compaction 

through destruction of vegetation or trampling that in turn alters local rates of NPP and 

decomposition. Animals can determine the amount of organic matter biomass and 

chemical elemental quality of that biomass in NPP that enters the soil pool (brown 

arrows).  Animal egestion and excretion, and decomposition can lead to net soil uptake 

of carbon. From Schmitz et al in review. 

 



Recent empirical studies have shown how many groups of animals interact with and affect 

vertical tropical forest structure.  However, these new studies have not yet been incorporated into 

large mechanistic models. Near-global LiDAR (GEDI) now gives us the ability to simulate 

animal/forest interactions at a large scale.  Below, we will give a short overview of some of this 

work that forms the empirical basis for our modeled upscaling.  For instance, recent work has 

combined animal GPS tracks with LiDAR data to show how tropical forest animals use vertical 

tropical forest structure (McLean et al 2016).  Next, large tropical mammals such as forest 

elephants have large influences on tropical forest structure and recent empirical studies have 

quantified some of these aspects.  Insects play a large role in tropical forest herbivory, but until 

recently, this had not been quantified.  Humans can also impact how animals move and use 

space.  Finally, how tropical forest animals move and use space affects important ecosystem 

services like seed and nutrient distribution.  We first show recent empirical advances and then 

will detail how we plan on incorporating all these results in to a state of the art global 

mechanistic model (Madingley) in combination with GEDI and MODIS data. 

Arboreal tropical forest animals use of vertical space 

The canopy of forests host great arboreal mammal diversity.  For instance, over 75 % of all 

vertebrates and 60 % of mammal species occupy neotropical forest canopies (Kays and Allison 

2001; Malcolm 2004).  We are just now beginning to understand mechanistically how such 

mammals use the forest canopy.  Arboreal mammals prefer canopy features that aid movement 

and provide foraging resources (Davies and Asner 2014). Mature forests often provide the most 

suitable habitat for arboreal fauna, particularly in the Neotropics. For example, tall canopies—a 

proxy for forest maturity—were a strong predictor of habitat use by Bald-faced saki monkeys 

(Pithecia irrorata) in the Peruvian Amazon (Palminteri et al. 2012). Another  example of three 

monkey species from Panama is described in Figure 2 (McLean et al 2016). 

These arboreal seed dispersers have large implication on biodiversity and ecosystem 

services such as carbon sequestration  (Harrison 2011 and Young et al 2016).  How seeds are 

distributed depends heavily on the movements of arboreal dispersers ( Russo et al. 2006), but 

Figure 2 – Maps of suitability of the canopy on Barro Colorado Island, Panama, as predicted by 

step selection function (SSF) models that related movement trajectories to LiDAR-derived measures 

of forest structure for three focal primate species. Colors indicate high (red) and low (blue) 

suitability.  From McLean et al 2016 



understanding these movement patterns requires mechanistic models for predicting how species 

move through the canopy (Muller-Landau and Hardesty 2005).  For instance, recent work 

showed that forest ecosystems stand to lose 66% of their carbon storage capacity following the 

loss of trees dispersed by large bodied frugivores (Bello et al 2015). Similarly, losses of 

frugivorous primates throughout the Amazon forest, which also control seed dispersal and tree 

recruitment, can cause an estimated 2.5% - 5.8%, loss of carbon storage potential in tree 

biomass, and could reach as high as 26.5% - 37.8% (Peres et al 2016).  Therefore, we plan to use 

arboreal animal bio-tracking data, and global LiDAR to incorporate how arboreal animals use 

space to better estimate their important ecosystem services. 

 

Forest elephants as Ecosystem engineers 

 

Forest elephants are 

ecosystem engineers much 

like their larger savanna 

cousins (Asner et al 2016).  

They are under even greater 

threat and their numbers have 

been reduced drastically in 

the past decades (Maisels et al., 

2013).  Much current research is 

just beginning to highlight how 

forest elephants influence other 

vegetation processes such as forest carbon cycling (Omeja et al., 2014; Terborgh et al., 2016a). 

One interesting hypothesis is that the presence of megafauna in African tropical forests, as 

opposed to Amazonia where fewer large herbivores species remain, might contribute to the 

differences in structure and above ground biomass (AGB) between the two regions (Lewis et al., 

2013; Terborgh et al., 2016b). For example, the presence of megafauna might account for some 

of the differences in structure and composition between Gabonese and Peruvian forests (Table 1) 

(Terborgh et al., 2016b). Forest elephants, by clearing the understory and increasing tree 

mortality within certain size classes, might be partly responsible for the lower stem density (425 

stems/ha) and higher mean tree size (0.074 m²) and AGB (429 Mg/ha) of Central African 

compared to Amazonia forest (597 stems/ha, 0.049 m², and 341 Mg/ha) (Lewis et al., 2013). 

Other studies have also speculated that a reduction in forest elephant disturbance following their 

population collapse, may partly contribute to an increase in above-ground carbon storage in 

African tropical forest (Lewis et al., 2009, 2013).  

However, this hypothesis has not yet been tested mechanistically regarding the role of 

megafauna. To address this research gap, we propose to input the role of megafauna on forest 

structure in the Madingley model.  We hypothesize that by reducing the number of stems, this 

thinning process might lower the competition for resources (light, water, and nutrients) among 

plants and allow larger and older trees to dominate (Lewis et al., 2013).   LiDAR is an effective 

tool for helping to understand elephants’ impact on forest structure.  Elephants have been shown 

Table 1-  Individual trees and tree species in different diameter 

classes in composite samples of 2383 trees from 6 Peruvian and 

6 Gabonese terra firme forests. From Terborgh et al 2016. 



to be the dominant driver of treefall in African savannas using on-the-ground data on African 

elephant densities and LiDAR-derived measurements of woody vegetation (Asner et al 2016 and 

Davies and Asner, forthcoming). Savanna studies have shown that the effects of bull elephants 

are landscape dependent, leading to decreases in carbon along rivers, at mid-elevations, and on 

steeper slopes.  We have access to high resolution LiDAR data for large areas of Gabon, home to 

some of the highest populations of forest elephants in the world.  We plan to use this data, plus 

on the ground elephant density data to understand how ecosystem engineers like forest elephants 

impact forest structure.  We will combine this empirical understanding then will incorporate this 

knowledge into the Madingley model as an ecosystem engineer cohort. 

Insect herbivory in tropical forests 

Insects play a vital role in carbon cycling in tropical forests, but there is little data and fewer 

mechanistic models to understand this process (Coley & Barone 1996).  Insect herbivore-

mediated processes can 

impact the quantity and 

quality of organic material 

transferred to the soil, 

and/or plant species 

composition, with variable 

net consequences for soil 

processes depending on 

the herbivores and 

ecosystem in question 

(Bardgett & Wardle 2003). 

In general, deposits from 

insects (excreta, bodies, 

unconsumed leaf 

fragments) were relatively 

labile: decomposing more 

rapidly than plant litter 

(Fonte & 

Schowalter 2004), 

increasing levels of soil N 

and P, and driving a variety 

of shifts on soil organic 

matter cycling (Fonte & 

Schowalter 2005). A recent 

study quantified the 

magnitude of, and 

underlying controls on, carbon, nitrogen and phosphorus cycled by invertebrate herbivory along 

a 2800 m elevational gradient in the tropical Andes. The results indicate that leaf area loss is 

greater at warmer sites with lower foliar phosphorus, and secondly, that the estimated herbivore‐

mediated flux of foliar nitrogen and phosphorus from plants to soil via leaf area loss is similar to, 

Figure 3 Carbon, nitrogen and phosphorus fluxes of lowland 

Amazon forest with and without invertebrate herbivory. 

Values represents means ± SE (n = 2), in units of 

kg ha−1 year−1, calculated from the two lowland forest plots in 

this study. Herbivore deposits represent the sum of excreta, 

moults, bodies and unconsumed leaf fragments.  From 

Metcalfe et al 2015 

http://onlinelibrary.wiley.com/doi/10.1111/ele.12233/full#ele12233-bib-0008
http://onlinelibrary.wiley.com/doi/10.1111/ele.12233/full#ele12233-bib-0004
http://onlinelibrary.wiley.com/doi/10.1111/ele.12233/full#ele12233-bib-0018
http://onlinelibrary.wiley.com/doi/10.1111/ele.12233/full#ele12233-bib-0019


or greater than, other major sources of these nutrients in tropical forests (Metcalfe et al 2015). 

This study found that herbivores consume a significant portion of plant carbon, potentially 

causing major shifts in the pattern of plant and soil carbon cycling.  We propose to use these 

insect herbivory results, along with new datasets currently being generated (see below for 

details), plus LiDAR-derived forest structure data to better incorporate how tropical insects 

consume leaf NPP with vertical structure. 

Humans modify animal use of space 

Recently, a 

paper in Science 

has demonstrated 

that humans can 

significantly 

negatively impact 

animal use of space 

(Tucker et al 

2018).  Specifically 

this paper used a 

GPS-tracking 

database of 803 

individuals across 57 

species, and found 

that mammal 

movement decreased 

by half to a third in 

areas of high human footprint in comparison to those with low human footprint. This was 

attributed to behavioral changes of animals to avoid areas with high human footprint.   This 

paper found mathematical relationships between human footprint and animal movement that can 

be incorporated into Madingley.  Since animal movement greatly impacts key ecosystem process 

such as predator-prey interactions, nutrient cycling, and disease transmission, it is important to 

have predictive modelling of these traits.  We propose to incorporate these results into 

Madingley by having a human footprint dataset impact animal movement and ecosystem 

services. 

Ecosystem services provided by animals 

Two recent studies compiled size relationship data for terrestrial mammals within a random-walk 

mathematical framework and found that the distribution of nutrients away from a concentration 

gradient is size dependent (with a scaling exponent of 1.17) suggesting that larger animals are 

disproportionately important for the flow of nutrients (Doughty et al 2013 and Wolf et al 2013).  

These papers used modern mammal species range maps and body mass to globally estimate the 

ability of animals to transport nutrients as a diffusivity (or the ability of nutrients to move away 

from a nutrient concentration gradient, just like thermal diffusivity indicates the ability of a 

surface to move heat away from a hot area) in units of square kilometres per year (Doughty et al 

2016).  Extinctions and hunting pressures over the past 12,000 years decreased this nutrient 

Figure 4 – Mammalian displacement in relation to the Human Footprint 

Index. (A) Median displacements; (B) long-distance (0.95 quantile) 

displacements. Both displacements decline with increasing human footprint 

(n = 48 species and 624 individuals).  From Tucker et al 2017 



diffusivity by large animals to less than 10% of its former value (Doughty et al 2016a) leading to 

significant hypothesized decreases in nutrient concentrations at the continental scale  (Doughty et 

al 2013 and Wolf et al 2013).   This framework could be easily incorporated into the Madingley 

model.  Therefore, with LiDAR 3D structure we will show how animals move through vertical 

space and in this component we will show how they provide ecosystem services. 

In this proposal, we will specifically address the following Sustainable Development Goals 

(SDGs): 

Target 15.5 • Take urgent and significant action to reduce the degradation of natural habitats, 

halt the loss of biodiversity and, by 2020, protect and prevent the extinction of threatened species 

Target 15.9 • By 2020, integrate ecosystem and biodiversity values into national and local 

planning, development processes, poverty reduction strategies and accounts 

In tropical forests, animals move nutrients and impact carbon cycling.  With Madingley, these 

services can for the first time be quantified and provide impetus across entire ecosystems to 

better preserve local biodiversity, thus preventing their extinctions.  Because we envision this to 

be a pan-tropical tool, these services can also be integrated into national and local planning.  

Animals that contribute to accelerated carbon sequestration could be incorporated into REDD+ 

and SDG frameworks, leading to possible poverty reduction as well as co-benefits of reducing 

forest loss and increasing biodiversity preservation.  In addition, Madingley will calculate many 

key essential biodiversity variables (EBVs) such as those listed in figure 6.  Such pan tropical 

EBVs will provide much data to help specific partner countries preserve their biodiversity.  We 

will leverage co-I Goetz and Jantz’s participation in an ongoing project funded by the Ecological 

Forecasting program that is partnered with the UN Development Program to address Forest 

Integrity for Conservation Planning.  That effort provides unique access to in-country partners 

and participants engaged in reporting on progress towards achieving SDGs, including SDG 15.5 

and 15.9 to which this proposal is most relevant, in Brazil, Gabon and Peru.   

 

Specifically, in this proposal we will include the following tools: 

1. Time series of satellite remotely sensed data – We propose to drive Madingley with MODIS 

GPP and NPP, which will inform available plant energy that animals in tropical forests can 

consume.  These products are not perfect for tropical forests (see Cleveland et al 2016), but 

our group has extensive experience with tropical forest GPP and NPP (see Doughty et al 

Nature 2015 as an example) so we can modify these with available field data where 

available.  We will combine this with LiDAR canopy structure data products from GEDI and 

airborne lidar (where available) which can provide full 3D characterization of habitat, 

including vertical profiles of cover, biomass and carbon density and foliage height diversity 

(Goetz et al 2015 and Tang et al 2017).   

2. Time series of in situ biological observations  - We will use ground based bio-tracking data 

from the tropics to inform Madingley such as GPS and accelerometer data for animals from 



the Atlantic and Amazon forests in Brazil (with Co-I Riberio) as well as forest elephant 

density data from Gabon.   

3.  Use of ecological models - We will improve the only global ecological model (Madingley) 

capable of producing pan-tropical country specific estimates of key EBVs and carbon 

cycling parameters.  We will also use simulated tropical forest NPP from NCAR’s CESM 

CLM model to run Madingley under future potential climate change scenarios.  Doughty 

currently has both models running (CESM on NAU supercomputer Monsoon, and 

Madingley on a high performance desktop). 

 

We propose to add five new animal functions to the Madingley model 

Figure 5.  Potential future methods of detecting and predicting how animals impact their 

environments. (A) Satellite derived LiDAR data that can predict global forest structure.  

(B) A hypothetical scene where LiDAR detects elephant driven changes to forest 

structure.  Alternately, LiDAR data predicts forest structure that indicates habitability by 

certain bird species.  (C) Hypothetical global ecosystem model predicting animal driven 

changes to forest structure, seed dispersal, and nutrient dispersal using mass based 

scaling equations.  From Schmitz et al in review. 
 



1. Arboreal cohorts that can make use of vertical tropical forest structure based on GEDI 

data and Brazil arboreal animal GPS and accelerometer data 

2. Ecosystem engineer cohort based on Gabon high resolution LiDAR data and forest 

elephant data. 

3. Insect consumption of vertical tropical forest NPP using Peruvian insect dataset. 

4. Animal movement can be constrained due to the human footprint 

5. Add ecosystem services by animals such as nutrient distribution to Madingley 

 

Overall 

“The grand challenge is to put all these pieces of information together into a global 

framework that can help us understand the biosphere as a system and how and why it is 

changing.” 

Animals are an often neglected in efforts to understand the biosphere as an integrated system.  

We believe that by improving Madingley with forest structure data and testing it with a number 

of empirical datasets we can better understand the biosphere as an integrated system.  Animals 

Figure 6 – Using Modis and GEDI data we will drive the Madingley model and add new animal 

cohorts to make use of this vertical structure.  Based on these changes, we will then produce a 

number of  EBVs and Carbon cycling data outputs (right) that could be used by tropical countries to 

inform policy decisions. 



are not just passive recipients of nutrients and energy, but actively drive ecosystem dynamics. 

We have shown the many ways in which animals can control and alter their ecosystems across 

broad landscapes. Consequently, animals and their functional roles should be considered as part 

of the biosphere but currently they are not. Indeed, disregarding them could lead to serious 

inaccuracies in models, as well as lead to ineffective policy formulation and management efforts. 

Our proposal, if funded will start to address these issues. 

Methods 

The Madingley model, the only current model capable of providing global animal EBVs and 

ecosystem services for all animals at the community level, currently acts like figure 7a, where all 

animals have equal access to plant NPP.  This is obviously not correct, a significant limitation of 

the model.   If funded, our goal is to have Madingley predict accurate ecology, trophic 

interactions, EBV’s, and ecosystem services for the pan-tropics similar to figure 7b and 7c. and 

with Modis NPP to determine real time available plant energy and GEDI to provide vertical 

structure. 

The different widths of green vegetation in figure 7b approximates the amount of plant matter 

available at each level based on the GEDI structure data.  For instance, in the below case, GEDI 

LAI would estimate that most available plant energy is in the canopy, with very little in the 

emergent layer and understory. In addition, GEDI will estimate horizontal heterogeneity in 

autotrophic biomass heterogeneity.  Therefore, real (large) gap dynamics can impact real time 

animal ecology.  If the canopy changes vertical structure over time, GEDI will detect this and we 

can predict modified EBVs and ecosystem services based on these structural changes. 

 
We will then parametrize an animal cohort to use the vertical space matrix based on data from 

existing species (GPS and LiDAR data from published or case studies). From these, we 

can create functional groups, which we know the range of vertical vegetation layers over which 



they might visit or interact with (e.g. jaguar = forest floor and understory, larger birds = all 

layers, monkeys = emergent layer or canopy, insects = everywhere but informed by leaf 

herbivory dataset).  Since we don't know the % time spent in each layer for most species, we can 

at first just split equally (i.e. 25% in each if four layers, 33% for three layers etc), use GPS data 

where available, or build relationships based on leaf/prey biomass. For instance, insects spend 

more time in canopy than emergent layer as there is more leaf biomass/prey available.  

 

With this methodology, we can represent the two main reasons animals use vertical structure  - 

food and security. For example, our "monkey" cohorts may spend much of their time in the 

canopy, which is safe from the "jaguar" cohorts. They will only be available prey during their 

forages into the lower levels, whilst tapir/white-lipped peccaries will be exclusively feeding from 

the forest floor.  They will therefore be  available as prey for the "jaguars" at all times.   

Capturing these accurate trophic interactions will be key to accurate pan-tropical estimates of 

EBVs and ecosystem services. 

 

We specifically will incorporate the following three steps to the  Madingley model: 

1. Use satellite derived MODIS GPP and NPP to quantify real time available plant energy 

for all tropical forests.  We will also use simulated tropical forest datasets from NCAR’s 

CESM CLM model to run Madingley under future potential climate change scenarios. 

2. Use GEDI LiDAR to split available plant energy into four accurate vertical bins based on 

various height thresholds (i.e. 0,1,2,40,50m) as shown in figure 7b. Co-Investigator Goetz is 

the GEDI Deputy PI for Science, and co-Is  Jantz and Burns are member of the GEDI 

Science Team.  

3. Use local field sites from which we have good contacts to run and test Madingley before 

up-scaling to a pan-tropics.  We list these local sites below: 

Regional 

a. Gabon - High resolution airborne Lidar data (NASA LVIS from AfriSAR 2016 

campaign), forest elephant density (Maisels et al 2014), and impact on forest 

structure impact (Terborgh et al. 2016). 

b. Brazil - Biosensor data for the Amazon and Atlantic forests (Riberio et al 2011) 

combined with spaceborne GEDI data. 

c. Peru  - Insect herbivory and high resolution carbon cycling data (Metcalfe et al 2015) 

combined with spaceborne GEDI data. 

Global 

d. Incorporate human footprint impact on animal motion based on equations from Tucker 

et al 2018. 

 e. Incorporate global lateral animal nutrient diffusivity maps from Doughty et al 2013 and 

2016. 

  

Specific empirical datasets and methodology we will use to parameterize Madingley 

Addition 1 – How mammals and birds use vertical space in tropical forests 

Importance – Currently there is no vertical structure to vegetation in Madingley and all 

herbivores have equal access to all leaf NPP.   



What we will do – We have created a spreadsheet containing published studies from tropical 

forests where authors have combined bio-logging data with LiDAR forest structure data 

(https://docs.google.com/spreadsheets/d/1Vw72Ng72oO_N3dQMoTt97eiv_0-

8lz51DMPo4EEE8gc/edit?usp=sharing).  We will first analyze these papers and any others we 

can find to create mass scaling relationships of how animals can access leaf NPP in our four 

different structure levels. Then, after adding 3D tropical forest structure to Madingley using 

LiDAR data, we will create a cohort of animals that can make use of the new vertical structure.  

For instance, we show a figure from McLean et al 2016 (Figure 2) where LiDAR data was 

combined with telemetry data to show how three different monkey species use space.  Based on 

all our data, we will look for mass based relationships in these datasets and if they exist, add 

them to Madingley.   

However, in our search of this literature, we have found such data with both biosensors and 

LiDAR data to be very limited.  However, project partner Milton Ribero has large numbers of 

biotracking data such as GPS and vertical accelerometers throughout Brazilian forests (both 

Atlantic and Amazon).  For instance, there is GPS data for Peccaries, Jaguares, Wolves, Foxes, 

and Pumas and accelerometer data for the Gladiator frog and Golden Lion Tamarins.  Other 

colleagues have also offered to share tracking data (for example, Carlos Peres has white-lipped 

Peccarie and tapir GPS data for the Amazon).   We will combine this bio-tracking data with the 

GEDI structure data to parameterize how these species use space.  Specifically, project Co-I’s 

Jantz and Burns, will work with Ribero and others on this.  Based on these data and the literature 

search, we will parameterize Madingley on how certain animals use vertical tropical forest space.   

Addition 2 – Add ecosystem engineer cohort to Madingley 

Importance – Large herbivores are ecosystem engineers with a significant impact on forest 

structure.   

What we will do – We will first use LiDAR data from the Laser Vegetation and Ice Sensor 

(LVIS) that has already been collected at 18m footprint resolution across Gabon, in coordination 

with the AfriSAR project.  We will use these data to better understand the impact of forest 

elephants on forest structure.  We will then relate this to the less densely sampled 25m forest 

structure data products derived from the GEDI LiDAR.  We have the best available information 

on forest elephant density that we will relate to the LiDAR structure metrics.  Based on these 

data sets and the Terborgh et al. (2016a) datasets on how forest elephants affect forest 

understories, we will also add an ecosystem engineer cohort to Madingley that can impact forest 

structure.  For Madingley, this will assume the form of forest dwelling herbivores>1000kg that 

will impact forest structure.  Where this cohort exists, more forest NPP will be distributed 

throughout the canopy (e.g. shifted to higher layers) based on what the LiDAR data show.   

Addition 3 – Add canopy insect herbivory and verify with data from Metcalfe et al. 

Importance – Tropical forest insect herbivores consume significant amounts of leaf NPP and 

nutrients and this can have a significant impact on total forest carbon and nutrient cycling.   



What we will do – Madingley already has an insect cohort, but currently this cohort has equal 

access to all NPP (Figure 7a).  We now have available the first pan tropical insect herbivory 

dataset from Peru, Brazil, Bolivia, Gabon, Ghana, and Malaysia (Doughty is a project partner on 

this project).  As an early example of this work, Metcalfe et al 2015, scanned leaves collected 

from litter traps in Peru and then estimated percent herbivory.  This dataset is almost entirely for 

insect herbivory because larger herbivores tend to eat the entire leaf.  The quantity of leaves 

eaten was demonstrated to have a significant impact on total leaf area as described in the 

introduction. 

At each site, we have data on total GPP, NPP, LAI, as well as total insect herbivory.  Based on 

these data we know the total consumption of NPP by insects across the tropics.  We can then 

modify the variables for insects (ectothermic herbivores < 50g) until they match the NPP 

consumption at each of plots.   

Addition 4 - Human modification of animal motion 

Importance – Madingley currently does not account for potential human impacts on animal 

movement which could also impact the ecosystem services that they provide.   

What we will do – Madingley currently uses mass based scaling to predict movement of animals.  

We will modify this based on the results from Tucker et al 2018 and shown in figure 4.  When 

animals are closer to humans their long term ranges are smaller.  This will affect competition 

between animals and their well being.  We propose to add a parameter reducing animals 

movement following the equations above in addition to the typical mass based scaling 

parameters.  Specifically, we will input a human 

footprint map to Madingley similar to that used in 

Tucker et al 2018 and Venter et al 2016 (Co-I’s 

Goetz and Jantz have access to the HFI dataset).  

Using the mass-based equations from Tucker et al. 

2018, we will introduce a negative weighting factor 

on animal movement when the human footprint 

index is high. 

Addition 5 - Calculate lateral nutrient diffusivity 

for animals  

Importance – Animals currently perform a vital 

ecosystem service of nutrient distribution but this is 

not incorporated into Madingley.   

 What we will do – The Madingley model already 

allows for the lateral diffusion of animals across 

space and already has mass based scaling 

parameters.  Therefore, the addition of our mass 

based equations for nutrient movement to Madingley 

should be relatively straightforward.  We also plan 

Figure 8 - Estimated movement of 

phosphorus concentrations in the Amazon 

Basin (a) with large animals and (b) 

without. From Doughty et al 2013.  



on adding a very simple linear growth parameter to Madingley that will allow for increased plant 

growth where there are more rock derived nutrients like Phosphorus.  Specifically, there will be 

an underlying global soil map with nutrient concentration gradients and based on our mass based 

equations, animals will distribute these nutrients across landscapes.  Then we will add a small 

amount of NPP to our satellite derived NPP based on the availability of such nutrients like 

phosphorus.  Therefore, we can capture real time feedbacks between forest structure, nutrient 

movement, and forest productivity.   

   

Overall 

We will first run and parametrize Madingley for individual  field sites with changes unique to 

that particular region.  For instance, we will run Gabon just adding the ecosystem engineer 

cohort using country specific data.  Next, once we have confidence that the model results match 

the local datasets, we will run Madingley for the entire countries of Brazil, Peru, and Gabon with 

all code changes.  We have been in contact with relevant partners from each of these countries to 

ensure that these countries will have access to the relevant datasets for their reporting needs.  

Specifically, we will produce EBV’s and carbon cycling data listed in Figure 6 for each of these 

countries in the final year of the three year project.  More broadly, after further testing we will 

eventually provide these datasets for all countries where there are tropical forests and under a 

range of future potential climate change and deforestation scenarios. 

 

 

Project management plan – Dr. Doughty will devote a significant portion of his time to ensuring 

the success of this project and will oversee all components of the research along with the 

Postdoc.  Co-PI Goetz as well as Co-I’s Jantz and Burns have extensive experience with LiDAR 

and will lead GEDI data interpretation.  PP Ribeiro will work with Co-I’s Jantz and Burns to 

interpret bio-sensor data.  Doughty and the Postdoc, with advice from Harfoot, will lead the 

incorporation of the results into Madingley.   

Task Management plan - Participants for each section. 

 Doughty Goetz Jantz Burns Postdoc Harfoot Ribeiro 

P1– Arboreal movement X X X X X  X 

P2 – Ecosystem engineer X X X X X   

P3 – Insect Herbivory X    X   

P4 – Human modification X    X   

P5 – Nutrient movement X    X X  

Write up results X X X X X X X 

 



Risks and mitigation strategies -    This project depends on existing datasets, published literature, 

GEDI datasets with knowledgeable participants (Goetz, Burns, and Jantz), and model 

development with people knowledgeable with the Madingley model (Harfoot and Doughty).  

Therefore, there is little risk to this project since the datasets already exist, the knowledge on 

how to use them is within the group and the model is well known to the group.  It is relatively 

low cost considering the breadth of the data that will be produced.  Most partners are based at 

NAU making communication more direct. 

 

 

Management plan-The project will commence on Dec 2018 on the following schedule: 

 Dec 

2018 

July 

2019 

Dec 

2019 

July 

2020 

Dec 

2020 

July 

2021 

P1– Arboreal movement X X X X   

P2 – Ecosystem engineer X X X X   

P3 – Insect Herbivory X X X X   

P4 – Human modification   X X X  

P5 – Nutrient movement   X X X  

Write up results    X X X 

 

 

Project deliverables - We estimate a minimum of five, high quality publications as an outcome 

of this proposal (one addressing each of the above sections).  More broadly, the better 

parametrization of Madingley for tropical forests will allow us to calculate the EBVs and carbon 

cycling parameters listed in Figure 6 for all tropical forest countries.  Members of our group have 

had contact with governmental partners in Peru (Michael Valqui - Coordinador Nacional UNDP) 

and Brazil (Adriana Bayma -Environmental Analyst, Ministry of Environment) at a recent 

Spatial Data workshop held at WRI last Oct.  We are in the process of working with them and 

others on the best ways to share country specific EBVs and animals ecosystem services datasets.  

We will leverage co-I Goetz and Jantz’s participation in an ongoing project funded by the 

Ecological Forecasting program that is partnered with the UN Development Program to address 

Forest Integrity for Conservation Planning.  Dr. Harfoot has a position at UNEP-WCMC and has 

colleagues that may provide additional in-country contacts 
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